January 11, 2021 By Fred Donovan 2 min read

STRIDE threat modeling is an important tool in a security expert’s arsenal. Threat modeling provides security teams with a practical framework for dealing with a threat. For example, the STRIDE model offers a proven methodology of next steps. It can suggest what defenses to include, the likely attacker’s profile, likely attack vectors and the assets attackers want most. It can help find threats, rank which are most serious, schedule fixes and develop plans to secure IT resources.

Good threat modeling is more important than ever. And, every practical use of threat modeling is based on a specific methodology. Among them is STRIDE, one of the earliest and most effective.

What is STRIDE threat modeling?

STRIDE is an acronym for six threat categories: Spoofing identity, Tampering with data, Repudiation threats, Information disclosure, Denial of service and Elevation of privileges. Two Microsoft engineers, Loren Kohnfelder and Praerit Garg, developed STRIDE in the late 1990s.

Teams can use the STRIDE threat model to spot threats during the design phase of an app or system. The first step helps find potential threats using a proactive process. The design of the system forms the basis for spotting threats. The next steps include finding the risks inherent in the way the system has been implemented, and then taking actions to close gaps.

Specifically, STRIDE aims to ensure an app or system fulfills the CIA triad (confidentiality, integrity and availability). Its designers created it to ensure that Windows software developers considered threats during the design phase.

You should use STRIDE along with a model of the target system. Construct this model in parallel, including a breakdown of processes, data stores, data flows and trust boundaries.

Using STRIDE, develop defenses for each threat. For example, imagine you find that an admin database is exposed to tampering with data, information disclosure and denial-of-service threats. In that case, you can implement access control logs, secure socket layer/transport layer security or IPSec authentication to counter those threats.

Using STRIDE in the cloud

STRIDE threat modeling can also be used to counter emerging threats to cloud computing, which is becoming common in corporate America. Cloud computing has quite different needs than those of on-premises computing. By nature, it opens the system up to risks and threats that may not have an on-premises counterpart. These need to be assessed to avoid attacks.

To deal with these threats, use the STRIDE threat model to spot and apply fixes. It helps uncover monitoring, logging and alerting needs. Using STRIDE, develop defenses for each threat: authentication, data protection, confirmation, confidentiality, availability and authorization. Then, rank the emerging threats according to damage, reproducibility, exploitability, affected users and discoverability.

You can also employ the STRIDE threat model to find and repair threats to Internet of things (IoT) devices, which are now widely deployed in companies. Threat modeling helps teams to study the threats IoT devices face, to avoid opening it up to bugs and to find openings already in existing systems.

STRIDE threat modeling offers a way to organize the many possible threats facing enterprise today. It helps experts better prepare for future and emerging threats, and enables security teams to respond better to a changing world of threats.

More from Threat Hunting

Hive0051’s large scale malicious operations enabled by synchronized multi-channel DNS fluxing

12 min read - For the last year and a half, IBM X-Force has actively monitored the evolution of Hive0051’s malware capabilities. This Russian threat actor has accelerated its development efforts to support expanding operations since the onset of the Ukraine conflict. Recent analysis identified three key changes to capabilities: an improved multi-channel approach to DNS fluxing, obfuscated multi-stage scripts, and the use of fileless PowerShell variants of the Gamma malware. As of October 2023, IBM X-Force has also observed a significant increase in…

Reflective call stack detections and evasions

6 min read - In a blog published this March, we explored reflective loading through the lens of an offensive security tool developer, highlighting detection and evasion opportunities along the way. This time we are diving into call stack detections and evasions, and how BokuLoader reflectively loads call stack spoofing capabilities into beacon. We created this blog and public release of BokuLoader during Dylan’s summer 2023 internship with IBM X-Force Red. While researching call stack spoofing for our in-house C2, this was one of…

SIEM and SOAR in 2023: Key trends and new changes

4 min read - Security information and event management (SIEM) systems remain a key component of security operations centers (SOCs). Security orchestration, automation, and response (SOAR) frameworks, meanwhile, have emerged to fill the gap in these capabilities left by many SIEM systems. But as many companies have begun reaching the limits of SIEM and SOAR systems over the last few years, they have started turning to other solutions such as extended detection and response (XDR). But does this shift spell the end of SIEM…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today